Comparing Information Extraction Pattern Models
نویسندگان
چکیده
Several recently reported techniques for the automatic acquisition of Information Extraction (IE) systems have used dependency trees as the basis of their extraction pattern representation. These approaches have used a variety of pattern models (schemes for representing IE patterns based on particular parts of the dependency analysis). An appropriate model should be expressive enough to represent the information which is to be extracted from text without being overly complicated. Four previously reported pattern models are evaluated using existing IE evaluation corpora and three dependency parsers. It was found that one model, linked chains, could represent around 95% of the information of interest without generating an unwieldy number of possible patterns.
منابع مشابه
A Task-based Comparison of Information Extraction Pattern Models
Several recent approaches to Information Extraction (IE) have used dependency trees as the basis for an extraction pattern representation. These approaches have used a variety of pattern models (schemes which define the parts of the dependency tree which can be used to form extraction patterns). Previous comparisons of these pattern models are limited by the fact that they have used indirect ta...
متن کاملDoes Fundraising Have Meaningful Sequential Patterns? The Case of Fintech Startups
Nowadays, fundraising is one of the most important issues for both Fintech investors and startups. The pattern of fundraising in terms of “number and type of rounds and stages needed” are important. The diverse features and factors that could stem from Fintech business models which can influence success are of the key issues in shaping these patterns. This study applied the top 100 KPMG Fintech...
متن کاملLarge-scale pattern-based information extraction from the world wide web
Extracting information from text is the task of obtaining structured, machineprocessable facts from information that is mentioned in an unstructured manner. It thus allows systems to automatically aggregate information for further analysis, efficient retrieval, automatic validation, or appropriate visualization. Information Extraction systems require a model that describes how to identify relev...
متن کاملOn-Demand Creation of Focused Domain Models using Top-down and Bottom-up Information Extraction
We present a hybrid method for automated on-demand creation of conceptual models of domain-specific knowledge. Models are thereby created using a two-step process of Domain Definition and Domain Description. Domain Definition creates a conceptual base whereas in the Domain Description relationships are added to the conceptual model using a pattern-based relational-targeting Information Extracti...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل